Exploring Spatio-Temporal Variability by Eigen- Decomposition Techniques
نویسندگان
چکیده
Riassunto: Lo studio della variabilità di fenomeni ambientali può essere realizzato utilizzando diverse metodologie. In questo lavoro si propone una visione unificata di una serie di tecniche multivariate che risultano particolarmente utili per l’identificazione del segnale oggetto di interesse. Facendo riferimento a processi spazialmente continui, le tecniche proposte vengono presentate nel contesto della Decomposizione Generalizzata agli Autovalori. Nonostante la metodologia considerata risulta utile per fini esplorativi, il lavoro ne propone un utilizzo anche a fini predittivi.
منابع مشابه
استفاده از POD در استخراج ساختارهای متجانس یک میدان آشفته آماری- همگن
Capability of the Proper Orthogonal Decomposition (POD) method in extraction of the coherent structures from a spatio-temporal chaotic field is assessed in this paper. As the chaotic field, an ensemble of 40 snapshots, obtained from Direct Numerical Simulation (DNS) of the Kuramoto-Sivashinsky (KS) equation, has been used. Contrary to the usual methods, where the ergodicity of the field is need...
متن کاملDetecting Roads in Stabilized Video with the Spatio-Temporal Structure Tensor
Video provides strong cues for automatic road extraction that are not available in static aerial images. In video from a static camera, or stabilized (or geo-referenced) aerial video data, motion patterns within a scene enable function attribution of scene regions. A Broad,^ for example, may be defined as a path of consistent motionVa definition which is valid in a large and diverse set of envi...
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کامل